Banks as Secret Keepers

Munich Lectures in Economics 2, CES

November 16, 2016

Bengt Holmström, MIT

Tri Vi Dang, Columbia
Gary Gorton, Yale
Guillermo Ordoñez, UPenn

Introduction

"Every banker knows that if he has to prove he is worthy of credit, in fact his credit is gone."

Walter Bagehot, Lombard Street: A Description of the Money Market, 1873.

- ▶ We are interested in understanding why banks are purposefully opaque
- ▶ ...and what the implications are for the types of investments that banks undertake.

TWO POLAR SYSTEMS

Stock Markets -to provide risk sharing

- Equity
- Continuous price discovery
- ► Transparent
- ► Information sensitive
- Centralized
- ▶ Not urgent

Money Markets

-to provide liquidity

- Debt
- Obviating price discovery
- ► Opaque
- ► Information insensitive
- Bilateral
- Urgent

Banks and Markets

- ► Securities markets are information revealing institutions, creating price-contingent claims risky liquidity.
- ▶ Banks are information concealing institutions, creating non-contingent claims safe liquidity.
- ▶ Depending on the risk of the underlying asset, banks can only issue limited amounts of safe liquidity to avoid information acquisition.

▶ Conclusion: The trade-off between less safe liquidity and more risky liquidity determines which firms fund projects through banks and which ones through capital markets.

ROAD MAP

- ▶ Setting.
- ► Capital Markets vs. Banks.
- ▶ Preventing Information Acquisition.
- ▶ Which Assets will Banks (Markets) Fund?
- ► Extensions

SETTING

Preferences and Endowments

▶ One storable good. Three periods. Three risk-neutral agents.

$$egin{array}{lll} U_F & = & \sum_{t=0}^2 C_{Ft} & \omega_F = (0,0,0) \ & U_E & = & \sum_{t=0}^2 C_{Et} + lpha \min\{C_{E1},k\} & \omega_E = (oldsymbol{e},0,0) \ & U_L & = & \sum_{t=1}^2 C_{Lt} + lpha \min\{C_{L2},k\} & \omega_L = (0,oldsymbol{e},0) \end{array}$$

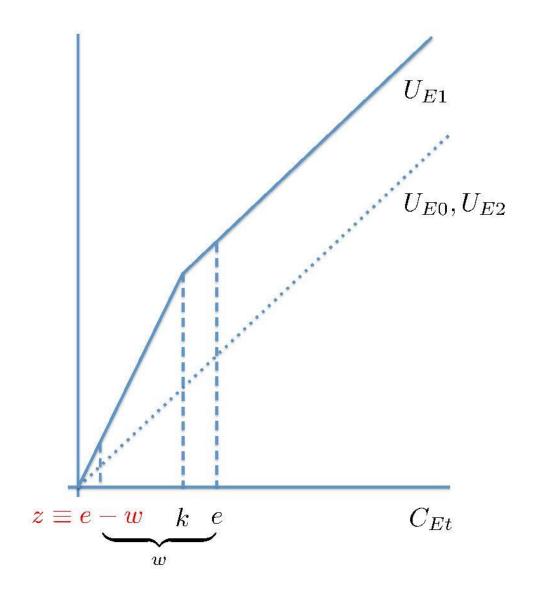
TECHNOLOGY

- ▶ The firm has two investment opportunities in period 0.
 - One is always a lemon (does not generate any payoff)
 - ► The other ("the project") is not a lemon
 - ightharpoonup In period 0 it costs w

▶ In period 2 it pays
$$\begin{cases} x > w & \text{prob. } \lambda \\ 0 & \text{prob. } (1 - \lambda) \end{cases}$$
 (state g)

- ▶ The project is ex-ante efficient, $\lambda x > w$.
- ▶ A file contains information that identifies the project and its state.
- ightharpoonup Only L can interpret the state of the project from the file.

ASSUMPTIONS


► Early consumers can cover their liquidity and investment needs, but not both.

$$e>k \ \ {\rm and} \ \ e>w \qquad \qquad {\rm but} \qquad \qquad \underbrace{e< k+w}_{\rm Useful\ notation:\ k>z\equiv e-w}$$

▶ Both consumers can cover all liquidity and investment needs.

$$2e > 2k + w$$

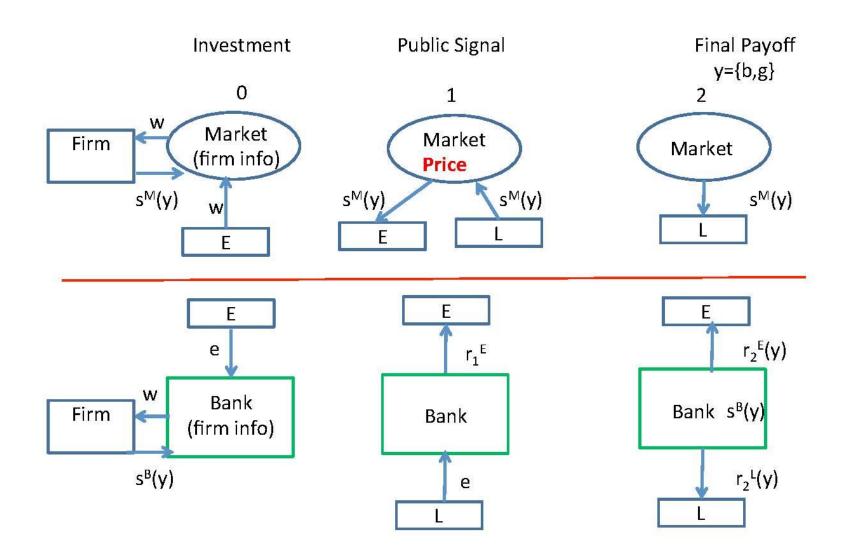
ASSUMPTIONS

BENCHMARKS

Autarky

▶ Consumers store endowments. Firm cannot invest.

First Best (unconstrained)

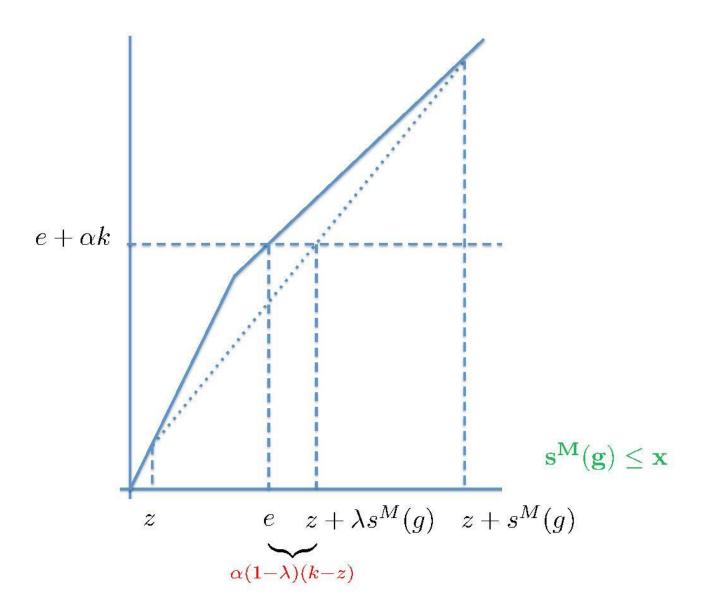

- ▶ Period 0:
 - Use w from E to finance the project.

Feasible since e > w

- ▶ Period 1:
 - ▶ Transfer k-z from L to E.

Feasible since e > k - z

MARKETS VS. BANKS


CAPITAL MARKETS

CAPITAL MARKETS

- ▶ Period 0:
 - ▶ F shows the file to a "market agent," who verifies it.
 - A "market agent" makes the file public and issues a security that pays $s^M(b)$ or $s^M(g)$ in t=2 to raise w from E.

- ▶ **Period 1:** Many *L*s enter.
 - E offers its shares for sale.
 - Ls bid for these shares (having seen the file), resulting in a fair market price (either $s^M(b)$ or $s^M(g)$).
- ▶ Period 2: Project's payoff realized. Security holders paid.

Risky Consumption for E

Comparison of Expected Utilities

If $s^M(g) \leq x$, risky consumption for E.

First Best

$E(U_F) = \lambda x - w$ > $E(U_E) = e + \alpha k$ $E(U_L) = e + \alpha k$

(-H)

Assumption: F gets all the surplus

Capital Markets

$$E(U_F) = \lambda x - \lambda s^M(g)$$
 $E(U_E) = e + \alpha k$
 $E(U_L) = e + \alpha k$

Capital markets implement $\alpha(1-\lambda)(k-z)$ less welfare.

If risk premium so high that $s^M(g) > x$, then no investment.

BANKS

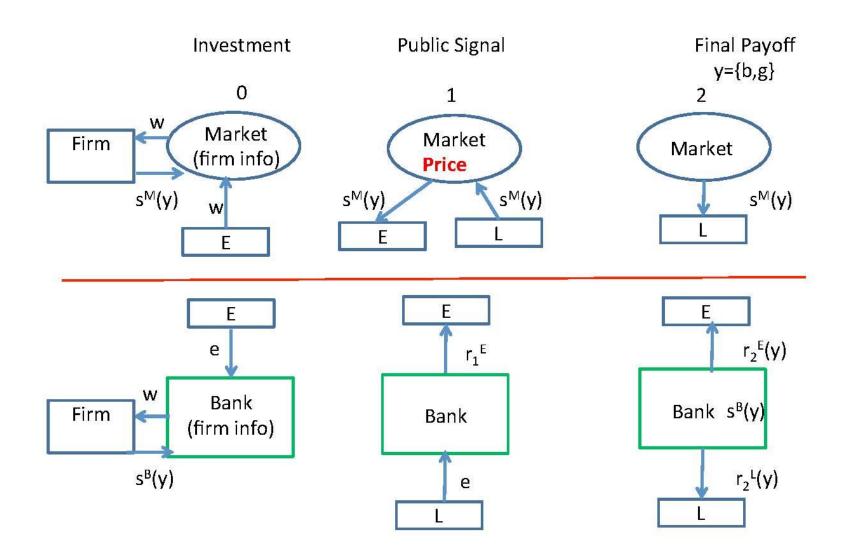
BANKS

▶ Period 0:

F shows the file to B, who verifies it.

F issues a security that pays $s^B(b)$ or $s^B(g)$ in t=2 to B.

E deposits e in B, who promises r_1^E in t=1 and $r_2^E(b)$ and $r_2^E(g)$ in t=2


- ightharpoonup B commits to keep the file secret.
- ▶ Period 1: A single *L* enters.

L deposits e in B, who promises $r_2^L(b)$ and $r_2^L(g)$ in t=2. E withdraws r_1^E .

▶ **Period 2:** Projects payoff observed. Securities' holders paid.

Can B implement a contract such that $r_1^E = k$?

MARKETS VS. BANKS

Deposit of L

Assets of
$$B$$
 $(t=1)$

Promises to E

Promises to L

Project is
$$b$$
 $(1-\lambda)$

$$z+e$$
 \checkmark

Residual from E

 $k + r_2^E(b)$

 $r_2^L(b)$

Project is
$$g$$
 λ

$$z + e + s(g)$$
 $k + r_2^E(g)$

$$k + r_2^E(g)$$

$$r_2^L(g)$$

Assets of
$$B$$
 $(t=1)$

Promises to E

Promises to L

Project is
$$b$$
 $(1-\lambda)$

$$z + e$$

$$k + 0$$

$$\underbrace{e-(k-z)}_{k}$$

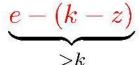
Project is
$$g$$
 λ

$$z + e + s(g)$$
 $k + r_2^E(g)$

$$k + r_2^E(g)$$

$$r_2^L(g)$$

Assets of
$$B$$
 $(t=1)$


Promises to E

Promises to L

Project is
$$b$$
 $(1-\lambda)$

$$z + e$$

$$k + 0$$

$$\downarrow$$

Project is
$$g$$
 λ

$$z + e + s(g)$$

$$k + \frac{e-k}{\lambda}$$

$$r_2^L(g)$$

E breaks even

$$(1+\alpha)k + \lambda r_2^E(g) = e + \alpha k$$

Assets of
$$B$$
 $(t=1)$

Promises to E

Promises to L

Project is
$$b$$
 $(1-\lambda)$

$$z + e$$

$$k + 0$$

$$\underbrace{e-(k-z)}_{>k}$$

Project is
$$g$$
 λ

$$z + e + s(g)$$

$$k + \frac{e-k}{\lambda}$$

$$\underbrace{e + \frac{(1-\lambda)}{\lambda}(k-z)}_{>k}$$

L breaks even

$$(1+\alpha)k + \lambda(r_2^L(g)-k) + (1-\lambda)(e-(k-z)-k) = e+\alpha k$$

Assets of
$$B$$
 $(t=1)$

Promises to E

Promises to L

Project is
$$b$$
 $(1-\lambda)$

$$z + e$$

$$k + 0$$

$$\underbrace{e-(k-z)}_{>k}$$

Project is
$$g$$
 λ

$$z + e + s(g)$$

$$k + \frac{e-k}{\lambda}$$

$$\underbrace{e + \frac{(1-\lambda)}{\lambda}(k-z)}_{>k}$$

Are these promises feasible?

$$k + r_2^E(g) + r_2^L(g) = e + z + s(g)$$
 \Rightarrow $E(s) = w$

Bank Contracts

Assets of
$$B$$
 $(t=1)$

Promises to
$$E$$

Promises to
$$L$$

Project is
$$b$$
 $(1-\lambda)$

$$z + e$$

$$k + 0$$

$$\underbrace{e-(k-z)}_{>k}$$

Project is
$$g$$
 λ

$$z + e + s(g)$$

$$k + \frac{e-k}{\lambda}$$

$$k + \frac{e-k}{\lambda}$$
 $\underbrace{e + \frac{(1-\lambda)}{\lambda}(k-z)}_{>k}$

Are these promises feasible?

$$k + r_2^E(g) + r_2^L(g) = e + z + s(g) \implies E(s) = w$$

By keeping information secret, B transfers the risk from E to L.

F keeps the insurance premium, B breaks even.

Comparison of Expected Utilities

First Best

Banks

$$E(U_F) = \lambda x - w$$
 $=$ $E(U_F) = \lambda x - \lambda s^B(g)$ $E(U_E) = e + \alpha k$ $E(U_L) = e + \alpha k$ $E(U_L) = e + \alpha k$

Banks implement the First Best allocation.

INFORMATION ACQUISITION

L'S INCENTIVES TO FIND OUT SECRETS

- ▶ So far we have assumed a secret is impossible to be discovered.
- \triangleright There may be incentives for L to acquire information privately.
- \triangleright Assume the cost of information is γ in units of consumption.

▶ L has incentives to acquire information if and only if

$$(1-\lambda)(e-r_2^L(b)) > \gamma$$

L'S INCENTIVES TO FIND OUT SECRETS

- ▶ So far we have assumed a secret is impossible to be discovered.
- \triangleright There may be incentives for L to acquire information privately.
- \triangleright Assume the cost of information is γ in units of consumption.

 \triangleright L has incentives to acquire information if and only if

$$(1-\lambda)(k-z) > \gamma$$

Banks are feasible when: γ , λ and z are high or k is low.

DISTORTIONARY CONTRACTS

- ▶ How can banks prevent information and still improve welfare?
- ▶ Banks can increase $r_2^L(b)$ to reduce the benefits of information.
- ► Two options:
 - ▶ **Distort Investment:** B maintains in cash more than z at t = 0.
 - Less investment.
 - ▶ **Distort Money Provision:** B promises less than k to E at t = 1.
 - Less safe liquidity.

Banks Distort Investment

Assets of
$$B$$
 Promises Promises $(t=1)$ to E to L

Project is b η $z+e$ $k \Rightarrow \frac{e-(k-z)}{+(1-\eta)w}$

Save more than z

Information can be avoided if and only if $r_2^L(b) \geq e - \frac{\gamma}{1-\lambda}$, or

$$(1-\eta) = rac{1}{w} \left[k - z - rac{\gamma}{(1-\lambda)}
ight] \geq 0$$
 Net benefit of info

Cost of distortion:
$$(1-\eta)(\lambda x - w) = \frac{\lambda x - w}{w} \left[k - z - \frac{\gamma}{(1-\lambda)} \right]$$

Banks Distort Money Provision

Project	X	is	b		

Assets of
$$B$$
 $(t=1)$

Promises to
$$E$$

Promises to
$$L$$

$$\operatorname{Project} X \text{ is } b \ (1 - \lambda)$$

$$e + z$$

$$r_1^E + 0 \Leftarrow e$$
Pay less than k

$$r_1^E + 0 \Leftarrow e - \frac{\gamma}{1 - \lambda}$$
 $e - \frac{\gamma}{1 - \lambda}$
 $e - (k - z)$

Project
$$X$$
 is g
 λ

$$e + z + s^{B}(g)$$
 $r_{1}^{E} + r_{2}^{E}(g)$ $r_{2}^{L}(g)$

$$r_1^E + r_2^E(g)$$

$$r_2^L(g)$$

Banks Distort Money Provision

Assets of
$$B$$
 $(t=1)$

Promises to E

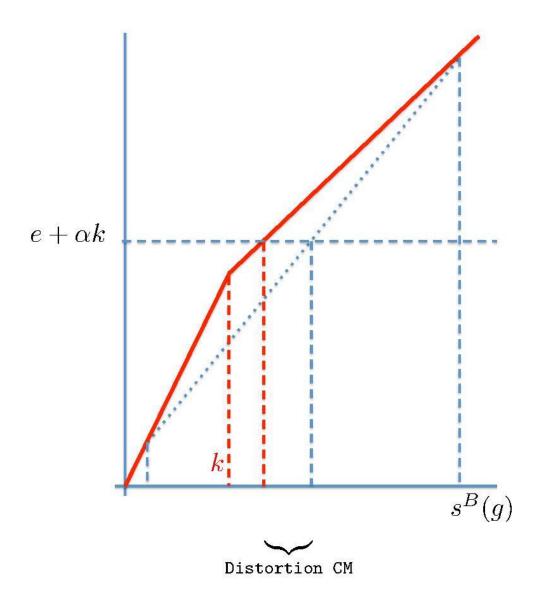
Promises to L

Project
$$X$$
 is b $(1-\lambda)$

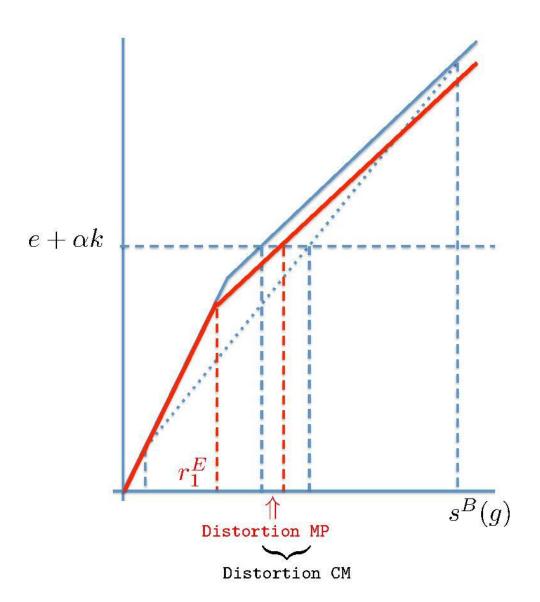
$$e + z$$

$$\underbrace{z + \frac{\gamma}{1 - \lambda}}_{< k} \Leftarrow \underbrace{e - \frac{\gamma}{1 - \lambda}}_{> e - (k - z)}$$

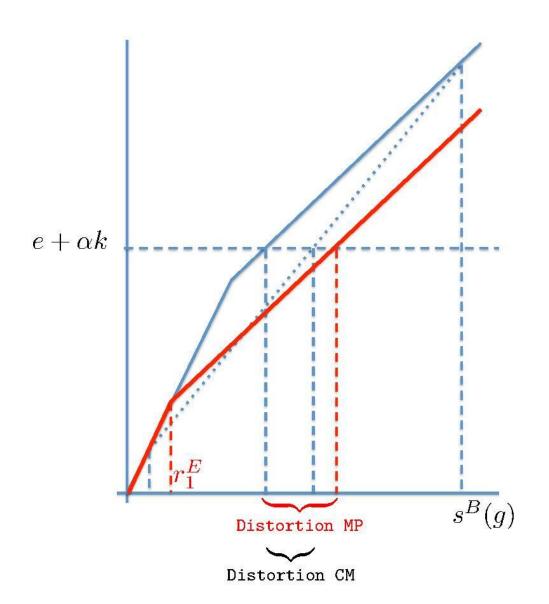
Project
$$X$$
 is g
 λ


$$e+z+s^B(g)$$
 $z+rac{\gamma}{1-\lambda}+rac{e-k}{\lambda}$ $e+rac{\gamma}{2}+rac{(1+lpha)}{\lambda}\left[k-z-rac{\gamma}{1-\lambda}
ight]$

Are these promises feasible?

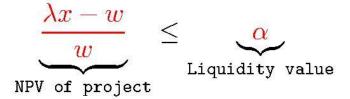

$$r_1^E + r_2^E(g) + r_2^L(g) \leq e + z + s^B(g) \quad \Rightarrow \quad s^B(g) = \frac{w}{\lambda} + \frac{\alpha}{\lambda} \underbrace{\left[k - z - \frac{\gamma}{(1 - \lambda)}\right]}_{\text{Net benefit of info}}$$

Cost of banks' distortion: $\lambda s^B(g) - w = \alpha \left[k - z - \frac{\gamma}{(1-\lambda)} \right]$

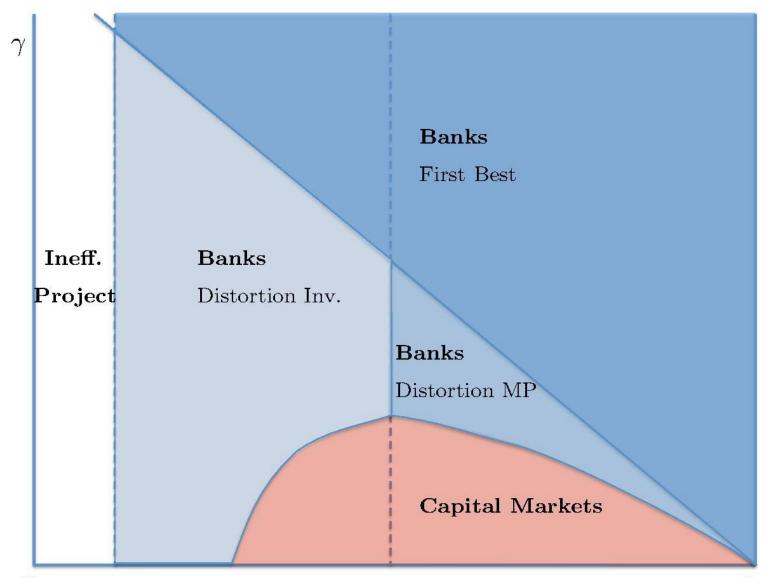

No Distortion of Money Provision

DISTORTION DOMINATES CAPITAL MARKETS

Capital Markets dominate Distortion


WHICH DISTORTION IS BETTER?

▶ Less investment is better than less safe liquidity if and only if


$$\frac{\lambda x - w}{w} \left[k - z - \frac{\gamma}{1 - \lambda} \right] \le \alpha \left[k - z - \frac{\gamma}{1 - \lambda} \right]$$

WHICH DISTORTION IS BETTER?

▶ Less investment is better than less safe liquidity if and only if

BANKS OR CAPITAL MARKETS?

FINAL REMARKS

- ▶ Banks are opaque, which indeed induce their regulation.
- ▶ Opacity is critical for private money and cheaper loans.
- ▶ Be careful with regulation that induces transparency.
- ▶ The optimal reaction to less bank equity is more opacity.